Japan’s nuclear dream over…? Ummm, not really!

I posted something on the issue of Japan becoming a nuclear-power free country about a week ago and what impact this would have on the country, particularly coming up to the heavy power usage summer period.

I suggested that Japan would become a very important case study for other countries considering going away from nuclear power.

Well, it seems that this isn’t now going to happen and that at least two nuclear power reactors will be brought on-line very soon, to deal with a reported 15% power deficit in the western area!

I have to say i’m a bit surprised, given what has very recently happened to the country. In some ways it’s a good thing and will lead to far less CO2 being emitted from alternative power sources, including oil and gas. It’s also actually a bit predictable, given Japan’s renewable power system is not yet able to support the country’s power needs. A very tempting situation to be in for the Government – having a fleet of 50+ reactors just standing by, ready to supply vast quantities of power.

A bit more time needed for the renewable power sector.



Isado: fragments and abstracts…

Some amazing images from Isado…



Wind vs nuclear & coal – lost in energy…

So, what is the future source of electrical power?

The candidates are coal, oil, gas, nuclear, wind, solar, hydroelectric and tidal. There are other smaller options, such as biomass, but these are the main ones.

Since Fukushima, there has been a lot more of an open debate, and increasing public awareness, of the issues surrounding future energy provision. The key issue has obviously been about nuclear power, but there are equally important questions about other sources of power. If nuclear is not considered an appropriate contender, what will take it’s place?

So, according to Wikipedia, the UK’s existing nuclear output is 10,982 MW, which is 16% of the total consumption in the UK.

A comparison can easily be made with wind power, which is probably the front runner for the UK. The large off-shore wind turbines produce roughly 5 MW each (max. output) and this type of wind power seems to be the trend right now, given less planning restrictions and economies of scale. Approximately 2,196 of these 5 MW wind turbines would be needed to replace the existing nuclear output.

A few recently developed offshore wind farms give an indication of what’s possible right now.

Thanet (off the coast of Kent) is the UK’s largest wind farm and comprises 100 of the 5 MW turbines, for a total of around 300 MW (3 MW per turbine due to inefficiencies). The UK would need 36 of these (100+ turbine) schemes to equal the present nuclear output!

Greater Gabbard wind farm = 500 MW from 140 turbines, at an estimated cost of £1.5 Billion. That’s £3,000,000 (£3M) per MW produced.

London Array scheme in the Thames Estuary = 1000 MW when built, at a cost of £2.2 Billion. That’s £2,000,000 (£2M) per MW produced. This will be the biggest anywhere and will also be the most cost-efficient, due mainly to the economies of scale.

In terms of a comparison with the nuclear option, the Olkiluoto nuclear power reactor being built right now in Finland, will produce 1500 MW and is costing a fixed price of €3 Billion (£2.6 Billion), although there appear to be cost and time over runs! That’s £1,733,000 (£1.73M) per MW produced.

So, the latest nuclear power station being built produces a third more power at a lower cost per MW.

Coal in another major world power source and is the default option for any country, given the vast reserves found in many areas of the planet and the relative cost efficiency of coal. There are 12 coal power stations (over the 100MW output level) in UK, which equals approximately 23,000 MW output. This is more than double the nuclear output.

There is an apparent need to get these off-line as quickly as possible, due to their huge environmental impact (air pollution, radiation, carbon dioxide, acid rain). If all of these were to be taken off-line, this would equal another 76 (100 turbine+) wind schemes.

So to replace just the existing coal and nuclear output with wind, it would need more than 115 wind farms, each of over 100 turbines. This would be more than 11,500 turbines, at 3 MW average each.

This is one of the main problems at the moment. The cost of installing and maintaining completely new grid systems for the wind farms to feed into is massive. This is another reason why conventional land based power stations are more efficient, as they tie into existing grid infrastructure.

Add to this the energy demand of the ‘cost’ of switching every car to electric, rather than petrol, to reduce then eliminate the pollution and carbon from the transport sector. A quote from George Monbiot’s blog on this subject.

The case against reducing electricity supplies is just as clear. For example, the Zero Carbon Britain report published by the Centre for Alternative Technology urges a 55% cut in overall energy demand by 2030 – a goal I strongly support. It also envisages a near-doubling of electricity production. The reason is that the most viable means of decarbonising both transport and heating is to replace the fuels they use with low-carbon electricity. Cut the electricity supply and we’re stuck with oil and gas. If we close down nuclear plants, we must accept an even greater expansion of renewables than currently proposed. Given the tremendous public resistance to even a modest increase in windfarms and new power lines, that’s going to be tough. http://www.guardian.co.uk/commentisfree/2011/may/02/environmental-fixes-all-greens-lost

A major consideration concerning the roll out of any number of nuclear reactors is the cost of processing the nuclear waste and the long-term storage of that waste. The example from Finland also includes the world’s first (very) long-term, purpose built nuclear storage site, 3 miles from the Olkiluoto power station. Named Onkalo, it will house all of Finland’s nuclear waste, for the next 100 years. It will then be back-filled and sealed for 100,000 years.

A recent documentary on this facility, titled Into Eternity (by Danish director Michael Madsen), explores the process which the Finnish authorities went through in deciding to give permission for this facility, as well as the construction itself. I’ve just ordered this film from Amazon so will do a review once I’ve watched it!

An alternative method of dealing with the nuclear waste, and one which I fully support, is to reprocess and recycle the waste. There are many ways to do this and the conclusions to the International Atomic Energy Agency’s, ‘spent fuel reprocessing options’ report includes re-processing as an important part of the process. The report also concludes multi-national fuel centres, operating within an independent international framework, are needed.

IAEA – spent fuel reprocessing options – aug 2008

‘The design of advanced reprocessing methods must deal in a comprehensive manner with (1) safety, (2) the control and minimization of plant effluents, (3) minimization of the waste generation, (4) the production of stable and durable waste forms, and (5) economic competitiveness. International collaboration on the development of advanced reprocessing methods, considering the magnitude of the challenges, is essential to facilitate the future deployment of these technologies.’

The significant other side to the whole energy debate is the need for energy conservation and lifestyle changes. This is the tricky part, given it involves billions of individual decisions by members of the public. There is some scope for Government intervention in this issue but, call my cynical, the majority of people really don’t care, let along even accept there is a problem. Hardly furtile ground for a mass uprising towards the necessary clean and sustainable future!

Unless people, companies & organisations are forced by law into it, they generally won’t, unless it’s part of a marketing strategy. The motivated few will not make a big difference, unless that is, you happen to be a senior policy maker in whitehall, and your boss also happens to be that way inclined, and most of the Cabinet are too… etc etc.! They are not getting strong signals about this from the general public and so will be less inclined to act.

The next time you turn on your microwave, tv, computer, ipad, ipod, radio, dishwasher, wireless router, washing machine, blender, kettle, toaster, grill, clothes dryer, hair dryer, camera, fridge or freezer, oven, mobile phone, calculator, lights, car, DVD/CD player, stereo, shaver, clock, bike lights  – think how hard it’s going to be to alter billions of people’s lifestyles and reduce our reliance on these things, in an age of dependence on computers and technology.

Changing people’s perceptions, attitudes and choices is the hard, and I would say, unrealistic path to the solution. How many people still smoke, even with overwhelming evidence which says it causes cancer? Nicotine, like modern electric-eating technology is addictive. Consumerism is addictive. The internet is addictive. No wonder 4 Billion people in the developing world want to experience what we have had in the ‘west’ for the last few decades.


Photos from Japan…

A couple of high impact images from the last few days, from Japan.


Japan earthquake/tsunami…

I was shocked yesterday seeing the terrible images from Japan, following the 8.9 earthquake off their NW coast. I’m trying to imagine what it would be like if a natural disaster struck England, with similar casualties. We just aren’t mentally or physically prepared for such an event.

Anyway, one of the things which struck me was that two of the world’s biggest economies are located on or very close to major tectonic fault lines. Both California and Japan (ranked 8th and 3rd in terms of economic output in terms of world ranking) are in this position – strange situation and very unstable.